The histograms of forces is a method to compute the relative position between objects. The types of objects that this method can handle are constrained to the following. Let A be a two-dimensional, crisp or fuzzy object that is a nonempty bounded set of points, equal to its interior closure, such that, for any $\theta \in \mathbb{R}$ and $v \in \mathbb{R}$, $A \cap \Delta(v)$ is the intersection of a finite number of mutually disjoint segments. Here, $\Delta(v)$ is the oriented line whose frame is defined by the vector i_0 and the point of coordinates $(0, v)$, where i_0 is the image of a vector i through a θ-angle rotation. The set $A \cap \Delta(v) \neq \emptyset$, denoted henceforth as $A_\theta(v)$, is a longitudinal section of A and is an object decomposition that capacitates robust spatial processing.

Consider now a couple of objects, (A, B), that both satisfy the properties of A. For an arbitrary angle θ, we would like to assess the weight of the proposition “A is in direction θ of B.” To numerically express the support of this statement, a function $F_r : T \rightarrow \mathbb{R}^+$, where T is defined as a set of triples, $T = \{(\theta, A_\theta(v), B_\theta(v))\} \cap \mathbb{R}^2$, and $r \in \mathbb{R}^+$, can be defined that operates upon collinear longitudinal sections of A and B. However, directly processing sets of longitudinal sections is not a trivial task. As such, the function F_r can be realized by further fragmenting A and B from longitudinal sections, $A_\theta(v)$ and $B_\theta(v)$, to aligned segments, $I \in A_\theta(v)$ and $J \in B_\theta(v)$, to pairs of points, $M \in I$ and $N \in J$. For each of these data types, it becomes necessary to define the aggregation operations that build F_r.

Since a longitudinal section is just a union of segments, and since a segment is just a union of points, it is prudent to first consider a function ϕ_r to handle points. Given two crisp objects, A and B, we define two arbitrary points, M and N, and $\phi_r(x_M - x_N)$, where x_M and x_N refer to the respective abscissas of M and N on $\Delta(v)$, is the weight of the argument. Provided that $x_M - x_N > 0$, there is some weight that supports the proposition that M is in the direction θ of N. Conversely, if $x_M - x_N < 0$, there is no weight that supports the proposition that M is in the direction θ of N. For any $r \in \mathbb{R}^+$, we can define a particular function instantiation, $\phi_r : \mathbb{R} \rightarrow \mathbb{R}^+$, null on \mathbb{R}^- and continuous on \mathbb{R}^+, as $\phi_r = 1/d_{MN}$, where d_{MN} represents the distance between points M and N, (cf. fig. 1(a)). This realization for $r = 0$ corresponds to the constant force exerted by one object on another, while the same realization for $r = 2$ corresponds to the scalar resultant of the elementary forces of gravity. Building upon the mapping function for points, line segments can be handled via a function $f_r : \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^+ \rightarrow \mathbb{R}^+$. For any number of θ values, there are an infinite number of couples, (I, J), of aligned segments such that $(\theta, I, J) \subseteq T$. Considering only a single instance, there exists a single real number, v, whose oriented straight line, $\Delta(v)$, includes I and J. Let the coordinates, relative to the frame associated with $\Delta(v)$, at the ends of segments I and J be a_i^g, b_i^g, a_j^g, b_j^g, where $a_i^g \leq b_i^g$ and $a_j^g \leq b_j^g$, and $d = b_i^g - a_i^g$, $d = b_j^g - a_j^g$, $d_a = a_i^g - b_i^g$, $d_j = a_j^g - b_j^g$ (cf. fig. 1(b)). Given the same two crisp objects, A and B, as above, we consider that (I, J) are an argument to support the proposition “A is in direction θ of B.” Thus, $f_r(d_I, d_{IJ}^g, d_J)$ represents the weight of this argument, and only depends on the lengths of I and J and on the relative positions of these segments on $\Delta(v)$. Consequently, the values of $f_r(d_I, d_{IJ}^g, d_J)$ can be estimated by...
summing up the weights \(\phi_r(x_M - x_N) \) of the \((M,N)\) arguments, where \((M,N)\) fully describe \((I,J)\):

\[
f_r(d_I, d_{ij}, d_J) = \int_{a_I}^{b_I} \left(\int_{a_J}^{b_J} \phi_r(u-v) \, dv \right) \, du = \int_{d_i}^{d_i + d_{ij}} \left(\int_{0}^{d_j} \phi_r(u-v) \, dv \right) \, du.
\]

(1)

Furthering the mapping function for line segments, couples of longitudinal sections can be handled via the function \(F_r : T \to \mathbb{R}_+ \). Given the same two objects, \(A \) and \(B \), as above, there exists one set \(\{I_i\}_{i=1,...,n} \) of mutually disjoint segments, and only one such that \(A_0(v) = \bigcup_{i=1,...,n} I_i \). Similarly, there exists one set \(\{J_j\}_{j=1,...,m} \) of mutually disjoint segments, and only one such that \(B_0(v) = \bigcup_{j=1,...,m} J_j \) (cf. fig. 1(e)). The weight of the argument \((A_0(v), B_0(v))\) can be estimated by summing the weights \(f_r(d_I, d_{ij}, d_J) \):

\[
F_r(\theta, A_0(v), B_0(v)) = \sum_{i=1,...,n; j=1,...,m} f_r(d_I, d_{ij}, d_J)
\]

(2)

of the \((I,J)\) arguments, where \(I \) and \(J \) describe \(\{I_i\}_{i=1,...,n} \) and \(\{J_j\}_{j=1,...,m} \), respectively.

Finally, for any function \(F_r : T \to \mathbb{R}_+ \) and for any couple of crisp objects \((A, B)\), there exists a function \(F_r^{AB} \) that represents the total weight of the original proposition. “A is in direction \(\theta \) of \(B\),” for a single value of \(\theta \):

\[
F_r^{AB}(\theta) = \int_{-\infty}^{\infty} F_r(\theta, A_0(v), B_0(v)) \, dv.
\]

(3)

As with the other functions, an outline has been provided in fig. 1(d). In the case that \(A \) and \(B \) are fuzzy objects, and the total number of unique graylevel values of \(A \) and \(B \) is \(g \), then (3) may be re-written as either:

\[
F_r^{AB}(\theta) = \int_{-\infty}^{\infty} \sum_{i=1}^{g} (\alpha_i - \alpha_{i+1}) F_r(\theta, A_0(v)^{\alpha_i}, B_0(v)^{\alpha_i}) \, dv
\]

(4)

or

\[
F_r^{AB}(\theta) = \int_{-\infty}^{\infty} \sum_{i=1}^{g} \sum_{j=1}^{g} (\alpha_i - \alpha_{i+1})(\alpha_j - \alpha_{j+1}) F_r(\theta, A_0(v)^{\alpha_i}, B_0(v)^{\alpha_j}) \, dv.
\]

(5)

Above, \(A^{\alpha_i} \) denotes an \(\alpha \)-cut for the current value of \(\alpha_i \). When multiple values of \(\theta \in [-\pi, \pi] \) are considered by \(F_r^{AB} \), the result is a force histogram. Examples of force histograms for the objects in fig. 1 are shown in fig. 2.

For more information, please consult: